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H Y P E R S O N I C  F L O W  IN AN M H D - A C C E L E R A T I O N  FACILITY 

AND U N D E R  F U L L - S C A L E  C O N D I T I O N S  

V. I. Alferov and I. V. Egorov UDC 533.6.011.8 

A formulation of the problem, a method of solution, and calculated results are considered for 
flow past the windward side of a sphere under conditions of an aerodynamic facility (a wind 
tunnel) with magnetohydrodynamic (MHD) acceleration of the air flow and the corresponding 
full-scale flight conditions in the Earth's atmosphere. Calculations were performed on the 
basis of numerical solution of Navier-Stokes equations taking into account thermochemical 
nonequilibrium of air and catalytic properties of the body surface. Results of the mathematical 
simulation of flow around a sphere in an MHD-acceleration wind tunnel are compared with 
experimental data obtained at the Central Aerohydrodynamic Institute (TsAGI). The problem 
of recalculation of experimental data for full-scale conditions is analyzed. 

In t roduc t ion .  One of the main problems of hypersonics is to adequately simulate physical and 
chemical transformations in the shock layer. Various models of homogeneous and heterogeneous processes 
that occur in a high-temperature disturbed flow region are considered [1]. 

Presently, the verification of numerical and experimental data on hypersonic flows in ground-based 
facilities [2, 3] and under full-scale flight conditions [4] is generating a great deal of interest. Much attention 
has been given to the search for a more adequate mathematical model for the vibration-dissociation interaction 
[5, 6] in flow around bodies with arbitrary catalytic activity of the surface [7]. In particular, this includes 
analysis of the problem of nonequilibrium radiation [4, 8] whose intensity is determined by the concentration 
of excited particles, the level of excitation of the vibrational degrees of freedom of molecular components, and 
other factors. The high level of exaltation of the electron degrees of freedom of NO molecules immediately 
behind the shock-wave front leads to intense ultraviolet radiation in the system of gamma-bands (200-230 nm) 
[9]. 

For a gas in thermochemical nonequilibrium, the difference in reaction-rate constants suggested by 
different authors can affect the flow pattern substantially. In this connection, the problem of ground-based 
verification of both the numerical methods and physicochemical flow models is rather topical. Various types of 
experimental facilities in which these effects can be reproduced and the methods of investigation of them are 
reviewed in [10]. Among these facilities, the authors classify shock tubes, expanding shock tubes, and ballistic 
facilities. The stand-off distance and shape of the shock wave and the pressure distribution over the body are 
suggested to be used as parameters for comparison between theoretical and experimental results. The short 
run duration in shock tubes and the small size of models in ballistic ranges impose significant limitations on 
the experimental study of nonequilibrium processes. 

The MHD-gas acceleration hypersonic wind tunnel constructed and used at TsAGI is free of these 
drawbacks in a sense. It allows one to realize hypersonic flight regimes and to study flow around bodies with a 
determining influence of physicochemical processes in the shock layer. Alfjorov et al. [11] report some results 
of comparison of experimental and calculated pressure distributions and results of studying the shock-wave 
position and shape on the surface of a sphere, a cone, and a wedge for the incoming stream in the MHD 
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facility. It is shown that use of the Navier-Stokes equations yields results that are in better agreement with 
experiment than those obtained on the basis of the model of a thin viscous shock layer. The shock-wave 
position and shape and the stand-off distance from the body surface are also described adequately by Navier- 
Stokes equations with a certain difference between the calculated and experimental values at large distances 
from the stagnation point. At the same time, the question of whether the MHD-acceleration wind-tunnel 
conditions correspond to full-scale conditions remained open. 

In the present paper, the conditions of flow around bodies in a hypersonic aerodynamic facility with 
MHD acceleration of the air flow are considered and compared with the corresponding full-scale conditions. 
Mathematical simulation was based on a solution of the full Navier-Stokes equations. Calculated data 
are compared with experimental results obtained at TsAGI, and the problem of recalculation of them to 
experimental data obtained under the full-scale conditions is analyzed. 

Gove rn ing  E q u a t i o n s .  In an arbitrary curvilinear coordinate system ~, '7 [z = x(~, ,7) and y = y(~, ,7), 
where x and y are Cartesian coordinates], the Navier-Stokes equations can be written in divergent form: 

OQ OE OG 
0t N = B  

Here Q is the vector of the conservative dependent variables of the problem, E and G are flux vectors in the 
curvilinear coordinate system, and B is the source vector. The vectors Q, E, G, and B are related to the 
corresponding vectors Qc, Ec, Gc, and Bc in the Cartesian coordinate system by the formulas 

( Q = J Q r  E = J  Ec ~x + Gc oy ] -~x + Gc oy]  B = J B c ,  

wherein J = cg(x, y)/O(~, V) is the Jacobian mapping. 
The Cartesian coordinates of the vectors Qc, Ec, 

equations have the form 
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where pi is the mass density of the ith component of the gas mixture (i = 1 , . . . ,  L,  where  L is the number 
of components of the gas mixture). A model of air with L - 9 (02, N2, NO, O, N, NO +, 02 +, N2 +, and e-) 
is considered in the present paper. In this notation, p is the total density of the gas mixture, u and v are 
the Cartesian coordinates of the velocity vector V, p is the pressure, e = h - p /p  -I- (u 2 + v2)/2 is the total 
energy per unit volume, H = h + (u 2 + v2)/2 is the total enthalpy, h -- EhiCi is the static enthalpy of the gas 
mixture, Ci, wi, and hi axe the mass concentrations, rates of formation, and static enthalpies of components 
of the gas mixture, and ev,k is the specific energy of the vibrational degrees of freedom of diatomic molecules, 
which is defined in the present paper by the harmonic oscillator formula 

R 06 
e,,t = Mk exp (Ok/Yk) -- 1" 

Here Mt is the molar weight of the kth component of the gas mixture, R is the universal gas constant, and 0t 
and Tk are the characteristic and vibrational temperatures. We used a three-temperature model of vibrational 
relaxation of the air (k = 1 , . . .  ,K)  with K - 3, where k = 1 corresponds to excitation of the vibrational 
degrees of freedom of an 02 molecule, k -- 2 the same for an N2 molecule, and k -- 3 the same for an NO 
molecule. It was assumed that all the rotational degrees of freedom of the molecules are excited in equilibrium, 
and the rotational temperatures Tr,k coincide with the translational temperature T. The static enthalpies of 
the atomic components of the gas mixture were determined from the formulas hi = (5 /2 ) (R /Mi )T  + h ~ and 
those of the molecular components were determined from the formulas ht = ( 7 / 2 ) ( R / M t ) T  + ev,k + h ~ where 
h ~ is the enthalpy of formation of a component of the gas mixture. 
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In the flux vectors of the Navier-Stokes equations, 1" is the stress tensor with components 

2 Ou - p  + - 2 �9 
r ~  = # 5 d i v V - 2 ~ x ,  r~y = ry~ = -~x ' ryy = p Oy ] '  

q is the heat-flux vector 

L K 
q = - ag rad  (T) + r V  + ~ h ; I  ~ + ~ q~, 

i= l  k=l  

where hi = hi - ev,k is the specific enthalpy of a component of the gas mixture that ignores vibrational 
energy (ev,k = 0 for 0 and N), I i is the diffusion-flux vector of the ith component, determined in the 
present paper using Fick's law in the approximation of the binary model of diffusion: Ii = -pDigrad  (Ci), 
q~ is the vibrational energy flux vector of a molecular component, determined from the formula q~ = 
-pD~grad (Cke~,k), and p, A, Di, and D~ are the viscosity, thermal conductivity, diffusivity, and self-diffusivity. 

In the Navier-Stokes equations for the plane (v = 0) and axisymmetric (v = 1) cases, the source vector 
B has the form 

( " (  ")) )' B = J  wi,0, r P + ~  d i v V - 2  r ,0,w~,k , 

where r = lY[ is the distance from the symmetry axis. 
In the equations for vibrational energy, the source w~,k is defined by 

where Qvt,k are inelastic vibrational-translational interactions, Qvv,k are vibrational-vibrational interactions, 
and Qvc,k is the effect of chemical reactions on the vibrational relaxation. 

In numerical integration of the Navier-Stokes equations, we used the following algebraic relations: 
the equation of state p = p R T [ M  [M = ( E O i / M i )  -1 is the molar weight of the gas mixture], EC~ = 1, 
EIi = 0, and also the conditions of constant elemental composition and zero diffusion fluxes of elements of 
the gas mixture, which follow from the binary model of diffusion for a uniform gas mixture. In determining 
the electron density, it was assumed that the gas is quasi-neutral and ionization is a background process: its 
contribution was ignored in the total energy balance. This assumption is valid for rates Voo ~< 8-9 km/sec 
and is not exactly correct at high rates. Note that the presence of charged particles can significantly affect 
the transport coefficients. 

B o u n d a r y  Cond i t i ons .  The problem of supersonic flow past the windward side of a blunted body was 
solved by distinguishing a bow shock wave in the region bounded by the surface of the body (sphere) 7 = 0, 
the flow centerline ( = 0, the shock-wave surface 71 = 1, and the output boundary ( = (0- The coordinates 
and 7 were related to the Cartesian coordinates x and y and the variable of the shock wave detachment from 
the body surface z s ( ( )  by the equations 

= ~w(~) + ~'(~)f(~)n~(~), y = y~,(~) + ~'(~)/(7),,~(~). 

Here zw(~) and yw(~) are parametric representations of the surface in flow, n~,(~) and n~(~) are the Cartesian 
coordinates of the unit vector of the outer normal of the surface, and f(7) is a function that defines the 
condensation of nodes of the computational grid along the normal to the body surface. For a sphere, we have 
zw(() = - cos (lr~) and y~(~) = sin (~r~). 

The generalized Rankine-Hugoniot conditions G - Goo = 0 were specified on the shock wave for 77 = 1. 
The free stream was assumed to consist of molecular nitrogen and oxygen (Co2 = 0.233). In calculation of the 
diffusion component of the flux vector G in the conservation laws on the shock wave, the differential operators 
were determined from the formulas 

0 07 0 0 07 0 
Oz Ox 071' Oy Oy 07 

At the boundary of the computational domain that coincided with the solid body surface 7 = 0, we 
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imposed nonpenetration and slip conditions and the condition of equilibrium-radiation emission 

qn + ~ r T  4 = 0, 

where ~ is the surface blackness coefficient, ar is the Stefan-Boltzmann constant, qn is the projection of the 
heat-flux vector q onto the normal to the body surface. For components of the gas mixture, we used the 
condition I i + Kipi = O, where Ki is the coefficient of catalytic activity of the solid-body surface. In all 
calculations, we used KNO = 0 for nitrogen oxide. For vibrational temperatures on the body surface, the 
equilibrium condition Tk = T was assumed. 

For ~ = 0, the values of gasdynamic variables on the symmetry axis were determined from the condition 
of evenness and oddness. At the output boundary of the computational domain we used "mild" conditions 
of extrapolation of the sought variables U = (u, v, p, T, Tl,, Ci, xs) t with an approximation of the form 3Uk -- 
4Uk-1 + Uk-2 = 0, where U is the vector of the nonconservative dependent variables of the problem. For the 
mathematical flow model considered in this paper, dim U = 14. 

The vector of the dependent variables of the problem includes x s. In solving the problem by an implicit 
method, we determined x s using the additional differential equation axs/&! = O. To complete the system of 
boundary conditions on the shock wave, the Rankine-Hugoniot conditions should be supplemented by one 
more relation [12]. For this we used the condition of extrapolation of pressure from internal points to the 
shock-wave surface. 

S imula t ion  of  C h e m i c a l  Processes .  In simulating nonequilibrium chemical processes, we considered 
the following reactions of dissociation, exchange, and associative ionization: 

O2"kYr , 2 0 + Y ,  O + N O ,  * N + 0 2 ,  

N 2 + Y ~  , 2 N + Y ,  O + N c  , N O + + e  - ,  

N O + Y ,  ~ N + O + Y ,  0 + O ,  ~ O + + e  - ,  

O + N 2 {  ~ N + N O ,  N + N t  ~ N + + e  - .  

Here Y is a catalytic particle, which can be a component of the gas mixture. The rate of formation of a 
component of the gas mixture wi was determined from the formula 

20 

= Mi ni,t  
/--1 

using the corresponding reaction rates 

= " - r !  x;' '" - 1-/. x?:',,], 
J J 

where Xj = Cj /Mj  is the molar concentration of the j t h  component, l is the reaction number, and v~, I and 
v~'l are stoichiometric coefficients. The rates of reverse reactions kb,t(T) and the equilibrium constants Kc,t(T) 
were obtained from the relations in [13]. 

The effect of nonequilibrium excitation of the vibrational degrees of freedom of the molecules on 
the dissociation rates was taken into account through the two-temperature dependence of the equilibrium 
constant Kc,t(T, Tk) = Kc,I(T)O~(T, Tk). For the equilibrium constants of the dissociation reactions, the 
function Ol(T, Tt) was determined on the basis of the model of an effective vibrational level separated by a 
distance fiT (B is the model of dissociation [6]) from the dissociation limit using the formula 

~ , ( T , T , )  = exp ( -  - ~ )  1 - e x p ( - O ' / T ' )  ' , T ) ( T  ' 

Here Dk is the dissociation energy. The following constants were used in the calculations [6]: Dk = 59,400, 
113,200, and 75,500, ~k = 1.5, 3, and 3 for 02, N2, and NO, respectively. For the exchange and ionization 
reactions, the function ~i(T, Tk) was defined as ~t(T, Tk) -- 1. 
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E x c i t a t i o n  of  t h e  V i b r a t i o n a l  Degrees  of F r e e d o m  of  t h e  Molecu les .  The interaction between 
the vibrational and translational degrees of freedom was simulated using the Landau-Taylor relation 

Q,,t,k = pk[e,,,k(T) - ev,k(Tk)l/(rk + 7"O,k), 

where rk is the relaxation time, rk = 1/(pNAPk), NA is the Avogadro number, and Pk = ~Pk,g(T)Xg �9 The 
J 

form of the probability functions pk,j(T) was determined from data  of [14]. For T > 8000 K, we used Park's 
correction r0,k suggested in [15]: 

M (~ = 10 -2~  
r0,k = pNAo. /SRT/~rM k 

The energy exchange between the vibrational degrees of freedom of the molecules was simulated using 
the expression 

Qvv,k = p2NACk Mk ~=1XjOi'k(T) e-d(1 + e~'k) - e*'k(1 + e~,j) exp ~ . 

j#k 

Here e*,k = 1/[exp(Ok/Tk) -- 1]. The form of the functions Oj, k(T) was determined from the data  of [14]. 
The change in the vibrational energy of the molecules due to chemical reactions was calculated using 

the expression 

(1~= 1 (Dk - ~kT)R 17 ) 
Q,,c,k = Mk Rk,t Mk + ~-" Rk,tek , 

1=16 

where the first term is responsible for dissociation reactions [it is assumed that  the mean changes in the 
specific vibrational energy in a single act of dissociation and recombination are (Dk - ~kT)R/Mk],  the second 
term is responsible for exchange reactions, and the m e a n  change in the specific vibrational energy in a single 
act of an exchange reaction is assumed to be equal to the specific vibrational energy ek of a newly formed or 
vanishing molecule. 

T r a n s p o r t  Coef f i c i en t s .  To determine the viscosity and thermal conductivity of the gas mixture, we 
used the following semi-empirical formulas of Wilke [16] and Mason and Saxena [17]: 

i j i j 
j~i  j~i  

Here Gi,j is a function tha t  is given by the equality 

Gi,j = (1 + ~ r  )5, 

+ M, IM, 

and #i and ,~i are the viscosity and thermal conductivity of a pure gas: 

2.6693 �9 10-6T~ v / ~  R # i (  0.354 R 0 - 3 M i  ) 
Pi = _2.0 1472 , Ai = 3.75 �9 103 ~ 0.115 + cpi . 

1.157oi r 

The collision diameter ai and the parameter ei in the potential energy of intermolecular interaction for the 
neutral components of the  gas were found from data of [18]: tri = 3.467, 3.798, 3.492, 3.05, and 3.298 and 
ei = 106.7, 71.4, 116.7, 106.7, and 71.4 for 05, N2, NO, O, and N, respectively. 

The Lennard-Jones potential was used to derive the functional dependence of the transport  coefficients 
[18]. The contribution of the energy due to the rotational degrees of freedom at a temperature  T (Eiken's 
correction) was taken into account in the calculation of the thermal conductivity of the pure gas Ai. 

The diffusion coefficients were determined in the present work from the condition of constant Schmidt 
numbers Smi = p/(pDi)  whose values were assumed to be equal to 0.5 for the neutral components of the gas 
mixture and 0.25 for ions. In determining the self-diffusion coefficients D~ in the expression for the vibrational 
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TABLE 1 

Conditions Voo, km/sec pr162 kg/m 3 

Tunnel 6.14 3.23- 10 -4 
(MHD-facilities) 

Full-scale 7.43 2.2- 10 -4 

R~, m Too, K 

0.02 1054 

Too,k, K 

5500 

240 

Co,oo 

0.231 

CN,oo 

0.102 

CNO,oo Co 2,oo 

0.00068 0.01 

0 0.233 

energy flux, we used the condition of constant numbers St = I~/(pD~) whose values were assumed to be equal 
to 0.5. 

A p p r o x i m a t i o n  of  t h e  Equa t ions .  The formulated problem was solved numerically on the basis 
of an integrointerpolation method (a finite-volume method). Its application to the Navier-Stokes equations 
written in divergent form permits one to obtain difference analogs of the conservation laws: 

r ",~n+l 'lh-~n+l g-2n+l ,,-., n+l  
~j,k - Qj,k" + r~j+l/2,k - ~j -1 /2 ,k  + "-U,k+l/2 - ~j,k-1/2 = B,+lj,k �9 

r h~ h~ 

Here n is the time-layer number, j and k are the node numbers in the ~ and r/directions, respectively, r is the 
time step, and h~ and hn are the steps along the ~ and 77 coordinates, respectively. This conservative difference 
scheme is fully implicit and, hence, theoretically allows one to remove the limitations on stability in solution 
of the rigid system of differential equations. 

In approximation of the convective component of the flux vectors E and G at semiinteger nodes, we 
used the second-order central difference scheme Ej+I/2 = ( 1 / 2 ) ( E ( Q j ) +  E(Qj+I)) .  For approximation of 
the diffusion component of the flux vectors E and G on the boundary of an elementary cell, we also used a 
second-order central difference scheme. The forward and mixed derivatives were calculated using the formulas 

OU  _ U~+l ,k  - Ui ,k  OU Uj+ l ,k+1  + U/ ,k+ l  - U i + l , k - 1  - Uj ,k -1  

cg~j+l/z,k h~ ' 0~1+1/2,k -- 4h,~ ' 

where U is the vector of the nonconservative dependent variables of the problem. 
The template of the difference scheme used to approximate the full Navier-Stokes equations consists of 

nine points. This scheme does not belong to the class of monotonous difference schemes and, hence, cannot be 
used to solve problems with discontinuities. However, in studies of problems wherein the  dependent variables 
have a smooth behavior, central difference schemes yield more exact results than monotonous schemes (usually 
the latter do not ensure exact second-order accuracy). 

The problem was solved on a nonuniform computational grid. At the upper (shock wave) and lower 
(solid body surface) boundaries of the computational domain, two zones with thickness 2/v/'R~ were selected. 
After the grid was made finer, each zone contained 20% of the total number of nodes in the transverse 
direction. 

So lu t ion  o f  G r i d  Equa t i ons .  To solve the nonlinear grid equations F(X)  = 0 obtained by 
approximation of the differential equations, where X is the vector of the sought grid variables, we used 
the modified Newton's method 

X It+l] = X It] _ rk+ID-1F(Xk) .  

Here D = OF/cgX is a Jacobi matrix and k is an iteration number. In the course of numerical solution, the 
parameter r t  was determined from the formula [19] 

(Ax[k l  _ A X [ k - q ,  X[ k] _ X[k-l] )  
r t + ,  = (~X[~] _ AXik_~])2 , 

where A X  [k] = D - I F ( X  k) is the correction vector. As the iteration process converges, rk ~ I and theoretically 
the convergence rate tends to the rate of quadratic convergence. 

The Jacobi matrix was formed using finite increments of the residual vector with respect to the vector of 
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Fig. 1 
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r I &T = 0.48.103 K 
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the sought grid variables. In approximation of the Navier-Stokes equations for a gas mixture in thermochemical 
nonequilibrium, the operator D has a sparse block nine-diagonal structure whose elementary block is a dehse 
14 x 14 matrix. 

The system of linear algebraic equations obtained by iteration with respect to nonlinearity was solved 
using the direct method of LU expansion (D = L x U, where L is the lower triangular matrix and U is 
the upper triangular matrix). To reduce the total number of arithmetic operations, we analyzed the sparsity 
pattern of the matrices L and U and renumbered the unknowns using the method of nested cross sections [20]. 
This technique has been tested many times in numerical experiments, and its reliability and high efficiency 
have been confirmed [21, 22]. 

Calcu la t ion  Resu l t s  and  Analysis.  The numerical studies were performed for the wind-tunnel 
conditions with MHD acceleration of the air flow and for the corresponding full-scale conditions. The MHD 
facility operates as follows. The gas heated in an electric-arc heater to To ~ 3500 K at p0 ~ 2.105 Pa enters 
the mixing chamber, to which an easily ionized eutectic Na additive (-~1 wt.%) is introduced. Then through 
the primary supersonic nozzle the gas enters the MHD accelerator in which it is accelerated to a necessary 
velocity in crossing d.c. electric and magnetic fields. Expanding in the secondary nozzle to prescribed static 
parameters, the gas enters the test section in which the model under study is located. After that the gas is 
discharged into the atmosphere through the diffuser, refrigerator, and a system of ejectors. 

Table 1 shows values of the main parameters that characterize the flow for the MHD and full-scale 
conditions. 

The criterion of adequacy of these conditions is the equality of the total enthalpy H = const, the 
dynamic pressure q = const, and the parameter of binary similarity D = const (D = Rwpoo, where R~ 
is the sphere radius). Using these requirements, we found flight conditions in the Earth's atmosphere that 
correspond to an altitude of H = 62.7 km. 

The results were obtained for a thermally nonequilibrium air model for two extreme cases of catalytic 
activity of the body surface: absolutely catalytic and absolutely noncatalytic. The surface blackness coefficient 
was ~ = 0.85. Most of the calculations were performed on a grid containing 31 x 71 nodes along and normal 
to the body surface (the coordinates ~ and q). A selective analysis of the accuracy and convergence of data 
that was performed using a grid with a larger number of nodes showed that the error of determining the 
equilibrium radiation temperature of the surface was less than 1%. 

Figure la and b shows isolines of the vibrational temperature of nitrogen TN2 for the experimental and 
full-scale conditions, respectively (an absolutely catalytic surface). It can be seen that the stand-off distance 
of the shock wave from the body surface is larger for the MHD conditions than for the flight conditions. This 
is due to the fact that in the MHD facility the gas flow is partly dissociated and the vibrational degrees of 
freedom of the molecules are at upper energy levels. 
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Profiles of the translational-rotational and vibrational temperatures across the shock layer for two 
points on the sphere (~ = 0 and 90 ~ axe shown in Fig. 2 (an absolutely catalytic body surface, ~ is the 
distance from the body surface related to xs). The solid curves in Figs. 2-6 refer to the MHD conditions 
and the dashed curves refer to the flight conditions. Evidently, the vibrational temperatures of the 02 and 
N2 molecules are rather close for both conditions, whereas the translational-rotational T and vibrational 
temperatures of NO differ significantly in the region adjacent to the shock wave and become close in the 
region of the solid boundary. We can assume that the excitation of the vibrational degrees of freedom of 
the molecules in the MHD facility is adequate to a certain extent to the excitation under full-scale flight 
conditions. 

To analyze the process of simulation of nonequilibrium chemical processes in the MHD facility, Fig. 3 
shows profiles of the mass concentrations of the O, N, and ON components across the shock layer at two 
points (~ = 0 and 90~ It can be seen that, under flight conditions, the chemical reactions of dissociation 
proceed more slowly because of the vibration-dissociation interaction. 

In laboratory simulations of hypersonic flows, the study of the density of charged particles is very 
important. Figure 4 shows profiles of the concentrations of charged particles across the shock layer. The body 
surface was considered absolutely catalytic for the charged particles. According to the data of Fig. 4, there 
is a great (roughly threefold) difference in electron density near the forward stagnation point, while near the 
lateral surface, the full-scale and ground-based experimental data are in fairly good agreement. 

Figure 5 shows data on the shock-wave detachment from the body surface, obtained by calculations 
and tests in the facility with MHD acceleration of air. It can be seen from Fig. 5 that the catalytic properties 
of the body surface affect only slightly the shock wave stand-off distance. The experimental results obtained 

246 



N.IO -11, cm-3 
e- "" p=O 

", 

NO + 
~ 1 7 6  . . . . .  . . . ,  ' ,  

, ,  - ,  " ,  
~ ' ,  

;* e -  , , ,  

i 

0 0.4 0.8 

Fig .  4 

N.10 -9, cm-3 

6 
, ,  - ( p  = 9 0  ~ 

i i , , , , , | i , 

0 0.4 0.8 

=s /R  w 

0.5 

0.3 

0.1 

o 2 

�9 , j  

a ,.," 
o o o o o 

o ' {o " ~ " ~ ' ~ . d ~  

Tw.|O -3. K 

3.2 

2.8 

2.4 

2.0 

0 

~- . . . . . . .  , . . ~  . ~  

i i 
' i o ' , 6  ' ~o ~,.,~.g 

Fig .  5 F ig .  6 

using the schlieren technique (Fig. 5, closed points) are in good agreement with the calculated data near the 
stagnation point, and the e x p e r i m e n t a l  data are systematically higher than the calculated data downstream 
of the stagnation point. It is of interest that the luminous zone was highly extended upstream from the shock- 
wave front near the stagnation point, while in motion downstream from the stagnation point this zone became 
narrower, reaching values smaller than the data of schlieren pictures. For ~0 ~ 60-80 ~ the experimental results 
for the luminous zone (Fig. 5, open points) are in better agreement with the calculated data for the shock 
wave stand-off distance. It was noted previously that the shock wave detachment from the body surface is 
greatly different for the MHD and flight conditions. 

Calculated data that characterize the aerodynamic heating of the body surface for the full-scale and 
MHD conditions are presented in Fig. 6, which shows fair agreement of the heat-transfer data (curves 1 and 
2 refer to the catalytic and noncatalytic surface, respectively). The more dramatic effect of the catalytic 
properties of the body surface for the MHD conditions is explained by the fact that the free-stream gas is 
partly dissociated and the vibrational degrees of freedom are excited more highly. In this case, the effect of the 
vibration-dissociation interaction on heat exchange under full-scale conditions is more profound than under 
the MHD conditions. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
00565) .  
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